Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hans Egold, Ulrich Flörke* and Stefanie Klose

Fachbereich Chemie und Chemietechnik, Universität Paderborn, Warburgerstraße 100, D-33098 Paderborn, Germany

Correspondence e-mail:
uf@chemie.uni-paderborn.de

Key indicators

Single-crystal X-ray study
$T=203 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.018 \AA$
R factor $=0.051$
$w R$ factor $=0.149$
Data-to-parameter ratio $=19.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Octacarbonyl- μ-dicyclohexylphosphido-$\mu-N, N$-diethyldithiocarbamato-dirhenium

The title compound, $\left[\mathrm{Re}_{2}\left\{\mu-\mathrm{S}_{2} \mathrm{NC}\left(\mathrm{Et}_{2}\right)\right\}\left(\mu-\mathrm{PCy}_{2}\right)(\mathrm{CO})_{8}\right]$ or $\left[\mathrm{Re}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NS}_{2}\right)\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{P}\right)(\mathrm{CO})_{8}\right]$, is the first structurally characterized rhenium complex with a bridging dithiocarbamate ligand. The Re‥Re distance is non-bonding.

Comment

The bromo bridge in $\operatorname{Re}_{2}(\mu-\mathrm{Br})\left(\mu-\mathrm{PCy}_{2}\right)(\mathrm{CO})_{8}$ is easily substituted by thiolate ligands giving phosphido-thiolatobridged dirhenium complexes of the general formula $\mathrm{Re}_{2}(\mu-$ $\left.\mathrm{PCy}_{2}\right)(\mu-\mathrm{S} R)(\mathrm{CO})_{8}$ (Egold et al., 2001). We expected the former complex to react in a completely analogous manner with sodium diethyldithiocarbamate. However, this reaction gave the title compound, (I), in which, surprisingly, the dithiocarbamate ligand coordinates in a $\mu-\eta^{1}-\eta^{1}$-mode.

(I)

The molecular structure of (I) shows a Re_{2} unit which is doubly bridged by a $\mu-\mathrm{PCy}_{2}$ group and the dithiocarbamate ligand. Each Re atom is additionally attached to four terminal CO ligands and attains thus a slightly distorted octahedral coordination. Carbonyl groups 4 and 7, which are both in trans-position to the $\mathrm{Re}-\mathrm{P}$ bonds, show ecliptic arrangement along the $\mathrm{Re} \cdots \mathrm{Re}$ vector with a $\mathrm{C}-\mathrm{Re} \cdots \mathrm{Re}-\mathrm{C}$ torsion angle of $-1.6(11)^{\circ}$, but the remaining CO ligands are staggered with torsion angles in the range 39.0 (5)-51.4 (6) ${ }^{\circ}$. The clearly non-bonding $\mathrm{Re} \cdots \mathrm{Re}$ distance of 4.368 (1) \AA is bridged by the $\mathrm{S}_{2} \mathrm{C}(9) \mathrm{NEt}_{2}$ ligand, with an $\mathrm{S} \cdots \mathrm{S}$ bite distance of 3.048 (4) \AA. The accompanying $\mathrm{S}-\mathrm{C}-\mathrm{S}$ angle is $123.1(7)^{\circ}$ and the $\mathrm{S}-\mathrm{Re} \cdots \mathrm{Re}-\mathrm{S}$ torsion angle of $57.8(1)^{\circ}$ shows the molecule to be twisted along the $\mathrm{C} 9 \ldots \mathrm{P}$ vector. The $\mathrm{S}_{2} \mathrm{CN}$ group itself is planar and forms a dihedral angle of $47.3(2)^{\circ}$ with the $\mathrm{Re}_{2} \mathrm{P}$ plane. The μ-P bridge is symmetric with equal $\mathrm{Re}-\mathrm{P}$ bond lengths of 2.562 (3) and 2.561 (3) \AA, whereas the two $\mathrm{Re}-\mathrm{S}$ bonds of 2.531 (3) and 2.485 (3) \AA differ significantly. Similar patterns of likewise bridging dithio ligands are known for $\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{Re}_{2}(\mu-\mathrm{S})_{2}\left(\mu-\mathrm{S}_{2}\right)\left(\mu-\mathrm{S}_{2} \mathrm{COR}\right)\left(\mathrm{S}_{2} \mathrm{COR}\right)_{2}\right]$ (McConnachie \& Stiefel, 1999) and $\mathrm{Re}_{2}(\mathrm{CO})_{8}\left(\mu-\mathrm{S}_{2} \mathrm{CPCy}_{3}\right)$ (Alvarez et al., 1991), both with direct $\mathrm{Re}-\mathrm{Re}$ bonds. The

Received 6 February 2002 Accepted 14 February 2002 Online 22 February 2002
related $\mathrm{Re}-\mathrm{S}$ bond lengths for these two compounds, of $2.442(2) / 2.462$ (1) \AA and $2.462(5) / 2.518$ (5) \AA, respectively, are somewhat shorter than those for (I). The first structure exhibits $\mathrm{Re}^{\mathrm{IV}}$ atoms with strongly distorted octahedral S_{6} coordination spheres and a completely planar $\mathrm{Re}_{2} \mu-\mathrm{S}_{2} \mathrm{CO}$ fragment. For the second structure the same twisted $M_{2} \mu-\mathrm{S}_{2} \mathrm{C}$ geometry is observed as for (I), for $\mathrm{Os}_{2} \mathrm{~N}\left[\mathrm{~S}_{2} \mathrm{CN}\left(\mathrm{CH}_{3}\right)_{2}\right]_{5}$ (Given \& Pignolet, 1977) and for $\mathrm{Ru}_{2}(\mathrm{CO})_{4}\left(\mu-\mathrm{S}_{2} \mathrm{CH}\right)(\mu-$ $\left.\mathrm{PBu}_{2}\right)(\mu$-dppm) (Böttcher et al., 2000) as well. S...S bite distances of these other structures range from 3.02 to $3.15 \AA$ and the $\mathrm{S}-\mathrm{C}-\mathrm{S}$ angles from 128.7 to 130.7°.

Experimental

In a Schlenk tube, $150 \mathrm{mg}(0.172 \mathrm{mmol}) \mathrm{Re}_{2}(\mu-\mathrm{Br})\left(\mu-\mathrm{PCy}_{2}\right)(\mathrm{CO})_{8}$ was dissolved in 20 ml THF. $39 \mathrm{mg}(0.228 \mathrm{mmol}) \mathrm{NaS}_{2} \mathrm{CNEt}_{2}$ was added and the reaction mixture was stirred for 24 h . The solvent was removed and the resulting residue subjected to TLC (eluent: dichloromethane/hexane, 1:10). From the major band, a pale yellow substance was isolated which, upon recrystallization from dichloromethane/pentane, gave 75 mg (46% yield) of the title compound. Spectroscopic data: $v($ CO)-IR: $2090(v w), 2077(s), 1998(v s), 1936$ $(s) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: 1.23-2.34 ($\left.m, 28 \mathrm{H} ; \mathrm{Cy}, \mathrm{Me}\right), 4.18\left(q,{ }^{3} J_{\mathrm{HH}}=\right.$ $\left.6.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 13.0(s, \mathrm{Me}), 26.0\left[s, \mathrm{C}^{4}(\mathrm{Cy})\right]$, $27.5\left[d,{ }^{2} J_{\mathrm{CP}}=9 \mathrm{~Hz}, \mathrm{C}^{2}(\mathrm{Cy})\right], 33.2\left[s, \mathrm{C}^{3}(\mathrm{Cy})\right], 41.0\left[d,{ }^{1} J_{\mathrm{CP}}=11 \mathrm{~Hz}\right.$, $\left.\mathrm{C}^{1}(\mathrm{Cy})\right], 51.2\left(s, \mathrm{NCH}_{2}\right), 183.5\left[d,{ }^{2} J_{\mathrm{CP}}=40 \mathrm{~Hz}, \mathrm{CO}(\right.$ trans $\left.\mu-\mathrm{P})\right], 188.6$ $\left(d,{ }^{2} J_{\mathrm{CP}}=6 \mathrm{~Hz}, \mathrm{CO}\right) ; 190.2\left(d,{ }^{2} J_{\mathrm{CP}}=7 \mathrm{~Hz}, \mathrm{CO}\right), 208.7\left(s, \mathrm{~S}_{2} \mathrm{CN}\right) .{ }^{31} \mathrm{P}$ NMR (CDCl_{3}): $22.5(s, \mu-\mathrm{P})$.

Crystal data

$\left[\mathrm{Re}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NS}_{2}\right)\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{P}\right)(\mathrm{CO})_{8}\right]$
$M_{r}=942.01$
Triclinic, $P \overline{1}$
$a=9.218$ (2) A
$b=11.891$ (2) \AA
$c=14.624(2) \AA$
$\alpha=96.40$ (1) ${ }^{\circ}$
$\beta=99.89(2)^{\circ}$
$\gamma=102.06(2)^{\circ}$
$V=1526.1(5) \AA^{3}$

$$
Z=2
$$

$D_{x}=2.050 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=7.3-15.6^{\circ}$
$\mu=8.16 \mathrm{~mm}^{-1}$
$T=203$ (2) K
Block, colorless
$0.30 \times 0.26 \times 0.20 \mathrm{~mm}$

Data collection

Bruker P4 diffractometer

ω scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.121, T_{\text {max }}=0.187$
8235 measured reflections
6945 independent reflections
5125 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.149$
$S=1.05$
6945 reflections
353 parameters
H -atom parameters constrained

Figure 1
The molecular structure of (I) with H atoms omitted. Displacement ellipsoids are drawn at the 50% probability level.

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

Re1-S1	$2.531(3)$	Re2-P1	$2.562(3)$
Re1-P1	$2.561(3)$	S1-C9	$1.740(12)$
Re2-S2	$2.485(3)$	S2-C9	$1.727(12)$
S1-Re1-P1	$91.58(10)$	Re1-P1-Re2	$117.03(11)$
S2-Re2-P1	$91.86(10)$	N1-C9-S2	$118.0(9)$
C9-S1-Re1	$108.5(4)$	N1-C9-S1	$118.9(9)$
C9-S2-Re2	$114.9(4)$	S2-C9-S1	$123.1(7)$

H atoms were placed at calculated positions, riding on the attached C atoms, with isotropic displacement parameters $U_{\text {iso }}(H)=1.2 U_{\text {eq }}(\mathrm{C})$, or $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl groups. Residual electron density of $1.25 \mathrm{e} \AA^{3}$ is found at $(0.058,0.871,0.327), 0.96 \AA$ from Re1.

Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

References

Alvarez, B., Miguel, D., Riera, V., Miguel, J. A. \& Garcia-Granda, S. (1991). Organometallics, 10, 384-387.
Böttcher, H.-C., Graf, M., Merzweiler, K. \& Wagner, C. (2000). Z. Anorg. Allg. Chem. 626, 597-603.
Bruker (1996). XSCANS. Version 2.21. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Egold, H., Klose, S. \& Flörke, U. (2001). Z. Anorg. Allg. Chem. 627, 164-171.
Given, K. W. \& Pignolet, L. H. (1977). Inorg. Chem. 16, 2982-2984.
McConnachie, C. A. \& Stiefel, E. I. (1999). Inorg. Chem. 38, 964-972.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

